Genetic feature selection for gait recognition
نویسندگان
چکیده
منابع مشابه
Genetic feature selection for gait recognition
Many research studies have demonstrated that gait can serve as a useful biometric modality for human identification at a distance. Traditional gait recognition systems, however, have mostly been evaluated without explicitly considering the most relevant gait features, which might have compromised performance. We investigate the problem of selecting a subset of the most relevant gait features fo...
متن کاملImproving Human Gait Recognition Using Feature Selection
Human gait, a biometric aimed to recognize individuals by the way they walk has recently come to play an increasingly important role in visual surveillance applications. Most of the existing approaches in this area, however, have mostly been evaluated without explicitly considering the most relevant gait features, which might have compromised the performance. In this paper, we have investigated...
متن کاملFeature Selection for Gait Recognition without Subject Cooperation
The strength of gait, compared to other biometrics, is that it does not require cooperative subjects. Previoius gait recognition approaches were evaluated using a gallery set consisting of gait sequences of people under similar covariate conditions (i.e. clothing, surface, carrying, and view conditions). This evaluation procedure, however, implies that the gait data are collected in a cooperati...
متن کاملFeature Selection for Face Recognition Using a Genetic Algorithm
Face recognition has been one of the challenging problems of computer vision. In response to this problem, SIFT features [1] have been used in [2]. However, since SIFT features were addressed to object recognition; we need to select the features that best fits in the face recognition problem. So, in this paper, we are using a genetic algorithm to select the most important features for face reco...
متن کاملFeature Subset Selection Using Genetic Algorithm for Named Entity Recognition
In this paper, genetic algorithm (GA) is utilized to search for the appropriate feature combination for constructing a maximum entropy (ME) based classifier for named entity recognition (NER). Features are encoded in the chromosomes. The ME classifier is evaluated for the 3-fold cross validation with the features, encoded in a particular chromosome, and its average F-measure value is used as th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Electronic Imaging
سال: 2015
ISSN: 1017-9909
DOI: 10.1117/1.jei.24.1.013036